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Global total net CO2 emissions

Billion tonnes of CO,/yr

In pathways limiting global warming to 1.5°C

with no or limited overshoot as well as in
pathways with a higher overshoot, CO2 emissions
are reduced to net zero globally around 2050.

CO, emissions must be reduced
below zero to reach the 1.5°C goal!

Direct Air Capture (DAC) can help
Four illustrative model pathways — Wlth bOthI

Source: IPCC Special Report on Global Warming of 1.5°C
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Basic Principle of Capture and Regeneration
for Direct Air Capture (DAC)

 DAC is a cyclic process,
consisting of capture and
regeneration

DAC- Basic Principle

i oo . Capture
« While capture a specialized filter

material is contacted with air and

binds the CO2 on the surface of a .

solid (Adsorption) or in a liquid AT _> L
(Absorption)

—5. . .
« The CO2 can be released by / \
energy input (either heat or Hlectric Energy A
electricity)

PS .. N xt Level Ra mpUpf
ect Air Capture and Storage

DACStorE

Thermal Energy



Different DAC principles and performances

Main Energy demand is heat for LT and HT-DAC
LT-DAC (solid sorbent): Steam with 100°C
HT-DAC (liquid sorbent): 900°C heat with natural gas burners

Both are at TRL8 with pilot plant operating or in construction

Novel approaches (e.g. Electro-Swing-Adsorption)

Technology HT-DAC | LT-DAC

Energy ----

demand
(MWh/tCOZ) Thermal 1.45 1.2-2.0

Next Level Ramp Up of Cost [tOd ay]
Direct Air Capture and Storage (USD/tCOZ)
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Heat integration of LT-DAC with synthetic fuel production

Process simulation using 1,00
Aspen with hydrogen 0.80
production and product ’
synthesis < 0,60
(@]

Syngas production via Co- '*é 0.40
electrolysis in a solid-oxide & ™
fuel-cell (SOEC) or via 0.20
reverse-water-gas-shift ’
(r'WGS) -

Energy Efficiency

Energy (el.+heat)
chem.Energy (Hy,)

Percentage of DAC-
heat covered

r'WGS+MeOH rWGS+FTS SOEC+MeOH SOEC+FTS

Prod UCt |S M ethanol (Meo H ) From: Hef3, Dominik; Klumpp, Michael; Dittmeyer, Roland (2020): Nutzung von CO, aus Luft als Rohstoff fur

or Fischer-Tropsch-Product
(FTS)

Next Level Ramp Up of
Direct Air Capture and Storage
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synthetische Kraftstoffe und Chemikalien. Hg. v. Verkehrsmininsterium Baden-Wirttemberg

A substantial percentage of the heat can be
obtained from the conversion processes
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Minimal thermodynamic Separation work of CO, from air
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Crowd OiIl: Integrating DAC in ventilation systems

» Crowd Oil concept: HVAC-integrated DAC-units,
to use existing air movement and infrastructure

« Utilization of waste heat and local renewable
energy sources to spread the load on the energy

system 1
* Numerous private investors could participate in

the market of negative emissions

» Potential in Germany: Realistic potential of A A ﬂ A
capturing 17 Mt CO,, per year! by utilizing the & )
ventilation capacity of large office and retail

b u | |d | N gS Picture: adapted from Dittmeyer et al 2019:Crowd oil not crude oil.

| My \m

IMengis, Nadine et al. (2022): Net-Zero CO 2 Germany—A Retrospect From the Year

° I ° o N xt Level Ra mp Up of 2050. In: Earth's Future 10 (2). DOI: 10.1029/2021EF002324.
ect Air Capture and Storage
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Distributed DAC- The Rooftop lab at IMVT
Practical execution of the Crowd Oil Concept at the rooftop of IMVT

* Bundesministerium
ok fiir Bildung \ﬂ'?

und Forschung S E K w;;

* Two different DAC units in the exhaust and
input of the ventilation system

* Use of renewable energy and waste heat for
direct air capture and utilization at the institute

* Goals:

 Validation of HVAC-integrated industrial
DAC units

» Optimal layouts of HVAC-integrated DAC

» Various operational strategies of HVAC-
DAC

« Explore real world obstacles for the
successful integration of DAC in ventilation
systems

* CO, utilization by ethanol synthesis
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Impressions of the Rooftop Lab at KIT- IMVT

ofle® Next Level Ramp Up of
I I I ° Direct Air Capture and Storage



DAC- Principles Modelling Arginine System

Agenda



Adsorber modelling: General Assumptions

» LT-DAC: Direct steam injection as regeneration method

 Fixed bed of round porous particles: Plug flow behaviour (1d model)
* Linear driving force- model: 2% = = Kg:(q; —q;)

» Multicomponent adsorption of water (GAB-isotherm) and CO, (Toth-isotherm) with co-
dependent adsorption

« Thermal equilibrium, adiabatic, constant gas density, ideal gas behaviour
aci 0%ci | Pouik 9qi _
0z Dax 0z2 t eP at O

aqi
- Energy balance:  (epscpr + (1 — €)psCps) = — kfe (14 6)Y;(—AHggs) aC:: Ds

) ac;
« Material balances: a—t‘ +u
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Adsorber model: Cell method

Cw Water concentration
< L > Ccoz CO, concentration
T Temperature
P pressure
D z dimensional variable
L length
D diameter

Porous Adsorbent

Particles

Fluid phase: T
Air/Steam P

DACStorE
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Adsorber model: Cell method
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Output of the model:

Continuous data of the adsorber state
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Distributed DAC- simulation of an integrated system

* Implementation of the Adsorber Model into a flowsheet simulation

(Simulink)
* The system consists of:
» Energy system: PV (diurnal variation), Heat Storage
« Building: diurnal occupancy, varying CO, concentration
* Fan: controlled or constant flowrate
» Air intake: weather depended conditioned
* Dynamic inputs create complex output timelines

Variation of Occupancy

Diurnal Variation of PV
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The flowsheet simulation gives a timeline of the adsorber

CO, loading Water loading
in Mol/kgap in Mol/kgap,
0 24 0 EEEEEE—————————— | 25
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Varying the cutoff and intake concentration by varying occupancy
and controlling the CO, level

7000 7000

A higher cutoff

£ 6000 6000 decreases the

Z o  capture rate while

=00 000 increasing the

S 1000 a0 3 thermal energy

3 Controlled =  demand slightly

?3000 CO, level 3000 %;

5 1 g  Controlling of the

g 2000 2000 8“ COZ-IeveI

2 000 1000 decreases capture
rate and energy

0 0 demand

1000/380ppm 700/380ppm 572/380ppm 469/380ppm 400/380ppm 572/265ppm 469/265ppm 400/265ppm
. Equilibrium CO, concentration/ cutoff concentration
ofle® Next Level Ramp Up of .
I I I I o Direct Air Capture and Storage The thermal Energy demand here is calculated by the
[ ]

temperature difference between adsorber intake and outlet:
. DACStorE -

Q = Mgteqm - Cp,Steam * AT
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Effect of the humidity on capture rate and energy consumption

- Water
» RH shift
= 10000
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Above 70% relative humidity, water can be The thermal Energy demand

Next Level Ramp Up of here is calculated by the

iI.Io Direct Alr Copture and Storage gained with the DAC Unit, lower humidities temperature difference between
| I"DACStorE lower the thermal energy demand oo intake and outl

Q = Mgteqm * Cp,Steam * AT
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Different weather situations

3500
Ambient temperature:  _ o
Base temperature and =
increasing diurnal 5 2%
. . @©
variation E 2000
Cold dry conditions S 1500
proof beneficial L
S
)
£ 500
0
15°C,70% 5°C,80% -5°C,40% 30°C,80% 30°C,10%
Basetemperature and Relative Humidity
S . P Next Level Ramp Up of
I I e L The thermal Energy demand here is calculated by the temperature difference between
I I ' DACS t O I" E adsorber intake and outlet: Q = rigiegm - Cp,steam * AT
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Electro Swing Approach: Arginine Absorption

L-Arginine is a selective chemical solvent
already used for CO2 capture from flue
gases

Arginine is sold as fitness supplement and
for livestock and is therefore safe to handle

Loaded L-Arginine can be regenerated
electrochemically by electrodialysis

Mass transport limitations due to low CO2
concentration in air; 3D printed structures
to enhance the transport at low pressure
drop

Electrodialysis provided by Deukum GmbH

Next Level Ramp Up of
Direct Air Capture and Storage
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Electro Swing Approaches- L-Arginin Adsorption

— ‘l_ll d

Next Level Ramp Up of
Direct Air Capture and Storage
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ED-Stack
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Li

CO2 outlet

The Task is

to find an

efficient measiremert
operating i
window

Conductivity sensor  » |
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Basic Principle of Electrodialysis

Arginine

lili DACSto:e ~ M=AEM  WE =BiPolarM. M =Elekirode
l

24



Characterization of the L-Arginin-CO, interaction

+ First item was the quantification of the capacity of Arginine to absorb CO, and the calibration of the conductivity measurement

+ Maximum of loading per molecule of Arginin is around one, with increasing concentration of Arginin, the relative CO, capacity
decreases, while the absolute capacity increases

» The solubility of pure Arginin is limited to around 1 mole per liter of water. Higher concentrations must be obtained by partial
CO, loading. The CO, loading then must be kept above the solubility limit

Loading
[MOlcoo/moly ]

1,0
0,8
0,6
0,4
0,2
0,0

N—40000O0O0

o wWoewowmwo

ANNOMm®

Conc Arg. [mol/L]
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Calibration curve for Arginine loading measurement
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3d-printed Gyroid structures as efficient absorber packings

Gyroids are triply periodic
minimal surface bodies

Can be additive manufactured
from different materials

Offer low pressure drop, while
increasing the mass transport
into the liquid

Structurally very rigid

Characterized by surface to
volume ratio

° .. N xt Level Ra mpUpf
ect Air Capture and Storage

DACStorE
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Pressure drop measurements of the different packing materials

 Pall ring packing as standard
industrial solution

* Dry pressure drop:

» Gyroids up to a surface ratio of
250 m2/m3 offer lower pressure
drop

« Similar pressure drop to the

Gyroid 350 (similar surface
ratio)

F=uG'\/ﬁG
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Wet pressure drop at varying liquid flows

Druckverlust [Pa m'1]
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Mass transport properties of Gyroids compared to the pall ring
packing

Pallring G250
3.5 3.5
= 3 =z 3
2 s ° 2
o 2.5 % 25
® ®
5 o2 : 29
o ® 2
15 Q15
. :
= 21
< - < (
®
0.5 0.5
31.8 ® 31.8
2.89
255 T 258 e 1.93
iy DY F-Faktor [Pa®?] o , 191, o7 F-Faktor Pa®5]
Flussigkeitsbelastung [m”" m™ h™'] Flussigkeitsbelastung [m” m™ h™']
Next Level Ramp Up of F == uG * A , p
Direct Air Capture and Storage G

DACStorE

29



Summary and outlook

« DAC will provide a nessasary contribution to a cyclic carbon economy and negative
emissions

* The integration into existing ventilation systems can have certain benefits, if the plant is
controlled smart

» L-Arginine proves to be a viable alternative technology in the future
» The liguid adsorbent must be scaled up and directly linked to the Electrodialysis

« The rooftop lab has to provide real world data
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Thanks a lot for your attention!

Next Level Ramp Up of
Direct Air Capture and Storage

.\ DACStorE

This work was performed as part of the project ‘A Comprehensive Approach to
Harnessing the Innovation Potential of Direct Air Capture and Storage for Reaching
CO,-Neutrality’ (DACStorE), which is funded by the Initiative and Networking Fund of
the Helmholtz Association (grant agreement number KA2-HSC-12).
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