|Ii|i"DACS Talks

Within the interdisciplinary talk series DACS Talks, young DACStorE scientists present
their recent findings.

The DACS Talks are hosted by the DACStorE Transformation Hub and are part of the
NETs@Helmholtz Research School.

The talk will be recorded and published (+ PPT) on our website (www.dacstore-
project.com).
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Introduction

e Global Warming

e Why Direct Air Capture
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Electro-Swing DAC Principle Proof-of-Concept Module Modelling
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DAC technologies - Principles

» Temperature Swing Adsorption

D Low Temperature Technology (70-100°C)
o Cost estimation: 600$/tCO,

0 Required Energy : Heat (2000KWh/tCO, )
& Electricity (650KWh/tCO,)
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» Alkaline Gas Washing

High Temperature technology: (800-950°C)
High capacity to capture CO,: ( 1milionTCO, / year)

Required Energy: 5.25 GJ/tCO,
Cost estimation: 94 — 232 $/tCO,
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Electro-Swing Approach for CO, Capture

DLow energy consumption (0.9-2.04 GJ/tCO,)
D Electrical regeneration (No heat-pressure required).

D Cost effective [1]
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[1] https://doi.org/10.1038/s41560-020-0554-4
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ESA-Fundmental

CO, adsorption  =smapplying potential tee ZCOZ‘
PCtO2 desorption =sssspversing potential - 26 - 2CO,
Cross Section of the adsorption unit
Q Q*
2e’
[ porous carbon
et t t' Q:quinone

Next Level Ramp Up of

°
ome ° ) :
I I I ° Direct Air Capture and Storage
"]l
®e

https://doi.org/10.1039/C9EE02412C
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Proof-Of-Concept (Electrode Fabrication)

» Redox-Active Suspension

Polymer

« Coating methods
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Proof-of-Concept (Module Design & Construction)

* The module comprised of several
layers, and the device design

Incorporates a stepwise approach to
avoid short circuits.
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Proof-Of-Concept (Set up)

* Flow diagram.

* CO, is taken up by reduced
polymer while the gas
stream passes through the
Module channel.

Dilutetd gas stream
(1% C0O2)
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Proof-of-Concept (Adsorption-Desorption experiments)

Capture-Release 10 cycles (Adsorption- Flush- Desorption)
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Modelling

* Modelling: The modeling of the 2D instationary
electrochemical system is implemented in MATLAB
using finite differences and the method of lines

found in schiesser et al. compendium
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|Ii|i"DACS Talks

Upcoming DACS Talks:

April: Simon Spiegel, KIT IFG
Iltbdll

July: Robin Koch, KIT IMVT DACS Talks
“Early Business Cases for a fast industrialization of DACs technologies.”

September: Patrick Behr, FZJ IEK-1
“Design of porous solid sorbent for direct air capture.”

November: Lutong Lu, KIT IMVT www dacstor roiect
“Electrochemical CO2 capture with solid adsorbers based on -dacstore-project.com

electroactive polymers.” dacstore-info@fz-juelich.de
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IIII‘ : ’ This work is performed as part of the project DACStorE, funded by the Initiative and
' DACStOI"E Networking Fund of the Helmholtz Association (grant agreement number KA2-HSC-12).
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