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CO2 emissions must be reduced 
below zero to reach the 1.5°C goal!
Direct Air Capture (DAC) can help 
with both!

Source: IPCC Special Report on Global Warming of 1.5°C



Agenda

DAC- Principles Modelling Arginine System



Basic Principle of Capture and Regeneration

for Direct Air Capture (DAC)

• DAC is a cyclic process, 
consisting of capture and 
regeneration

• While capture a specialized filter 
material is contacted with air and 
binds the CO2 on the surface of a 
solid (Adsorption) or in a liquid 
(Absorption)

• The CO2 can be released by 
energy input (either heat or 
electricity)
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Different DAC principles and performances
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Technology HT-DAC LT-DAC ESA

Energy 

demand

(MWh/tCO2)

Electr. 0.36 0.2-0.3 0.25-0.5

Thermal 1.45 1.2-2.0 0

Cost [today] 

(USD/tCO2)

64-232

[<250]

<100 

[200-

800]

50-100

• Main Energy demand is heat for LT and HT-DAC

• LT-DAC (solid sorbent): Steam with 100°C

• HT-DAC (liquid sorbent): 900°C heat with natural gas burners

• Both are at TRL8 with pilot plant operating or in construction

• Novel approaches (e.g. Electro-Swing-Adsorption) Picture: Climeworks

Picture: Carbon Engineering



Heat integration of LT-DAC with synthetic fuel production
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From: Heß, Dominik; Klumpp, Michael; Dittmeyer, Roland (2020): Nutzung von CO2 aus Luft als Rohstoff für 

synthetische Kraftstoffe und Chemikalien. Hg. v. Verkehrsmininsterium Baden-Württemberg

• Process simulation using 
Aspen with hydrogen 
production and product 
synthesis

• Syngas production via Co-
electrolysis in a solid-oxide 
fuel-cell (SOEC) or via 
reverse-water-gas-shift 
(rWGS)

• Product is Methanol (MeOH) 
or Fischer-Tropsch-Product 
(FTS)

A substantial percentage of the heat can be 

obtained from the conversion processes



Minimal thermodynamic Separation work of CO2 from air
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• There is a lower 
limit on how 
efficient DAC can 
get

• Novel DAC 
approaches 
promise to get 
close to this 
physical limit



Crowd Oil: Integrating DAC in ventilation systems

• Crowd Oil concept: HVAC-integrated DAC-units, 
to use existing air movement and infrastructure

• Utilization of waste heat and local renewable 
energy sources to spread the load on the energy 
system

• Numerous private investors could participate in 
the market of negative emissions

• Potential in Germany: Realistic potential of 
capturing 17 Mt CO2 per year1 by utilizing the 
ventilation capacity of large office and retail 
buildings
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1Mengis, Nadine et al. (2022): Net‐Zero CO 2 Germany—A Retrospect From the Year 

2050. In: Earth's Future 10 (2). DOI: 10.1029/2021EF002324.

Picture: adapted from Dittmeyer et al 2019:Crowd oil not crude oil.



• Two different DAC units in the exhaust and 

input of the ventilation system

• Use of renewable energy and waste heat for 

direct air capture and utilization at the institute

• Goals:

• Validation of HVAC-integrated industrial 

DAC units

• Optimal layouts of HVAC-integrated DAC

• Various operational strategies of HVAC-

DAC

• Explore real world obstacles for the 

successful integration of DAC in ventilation 

systems

• CO2 utilization by ethanol synthesis
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Distributed DAC- The Rooftop lab at IMVT
Practical execution of the Crowd Oil Concept at the rooftop of IMVT
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Impressions of the Rooftop Lab at KIT- IMVT
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• LT-DAC: Direct steam injection as regeneration method

• Fixed bed of round porous particles: Plug flow behaviour (1d model)

• Linear driving force- model: 
𝛿𝑞𝑖

𝛿𝑡
= 𝐾𝐺,𝑖 𝑞𝑖

∗ − 𝑞𝑖

• Multicomponent adsorption of water (GAB-isotherm) and CO2 (Toth-isotherm) with co-
dependent adsorption

• Thermal equilibrium, adiabatic, constant gas density, ideal gas behaviour

• Material balances: 
𝜕𝑐𝑖

𝜕𝑡
+ 𝑢

𝜕𝑐𝑖

𝜕𝑧
− 𝐷𝑎𝑥

𝜕2𝑐𝑖

𝜕𝑧2 +
𝜌𝑏𝑢𝑙𝑘

𝜖𝑃

𝜕𝑞𝑖

𝜕𝑡
= 0

• Energy balance: (𝜖𝜌𝑓𝑐𝑃𝐹 + 1 − 𝜖 𝜌𝑠𝑐𝑃𝑆)
𝜕𝑇

𝜕𝑡
= 𝑘𝑓𝑒

𝜕2𝑇

𝜕𝑧2 + (1 + 𝜖) σ𝑖 −∆𝐻𝑎𝑑𝑠
𝜕𝑞𝑖

𝜕𝑡
𝜌𝑠

12

Adsorber modelling: General Assumptions



Adsorber model: Cell method
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Adsorber model: Cell method
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Output of the model:

Continuous data of the adsorber state
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Distributed DAC- simulation of an integrated system
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• Implementation of the Adsorber Model into a flowsheet simulation 

(Simulink)

• The system consists of:

• Energy system: PV (diurnal variation), Heat Storage

• Building: diurnal occupancy, varying CO2 concentration

• Fan: controlled or constant flowrate

• Air intake: weather depended conditioned

• Dynamic inputs create complex output timelines
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The flowsheet simulation gives a timeline of the adsorber
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Varying the cutoff and intake concentration by varying occupancy 

and controlling the CO2 level
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The thermal Energy demand here is calculated by the 

temperature difference between adsorber intake and outlet: 
ሶ𝑄 = ሶ𝑚𝑆𝑡𝑒𝑎𝑚 ⋅ 𝑐𝑝,𝑆𝑡𝑒𝑎𝑚 ⋅ Δ𝑇



Effect of the humidity on capture rate and energy consumption
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Above 70% relative humidity, water can be 

gained with the DAC unit, lower humidities 

lower the thermal energy demand

The thermal Energy demand 

here is calculated by the 

temperature difference between 

adsorber intake and outlet:
ሶ𝑄 = ሶ𝑚𝑆𝑡𝑒𝑎𝑚 ⋅ 𝑐𝑝,𝑆𝑡𝑒𝑎𝑚 ⋅ Δ𝑇



Different weather situations
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The thermal Energy demand here is calculated by the temperature difference between 

adsorber intake and outlet: ሶ𝑄 = ሶ𝑚𝑆𝑡𝑒𝑎𝑚 ⋅ 𝑐𝑝,𝑆𝑡𝑒𝑎𝑚 ⋅ Δ𝑇
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Electro Swing Approach: Arginine Absorption
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Fan
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CO2 depleted air

Regenerated solution

CO2

H2,O2

• L-Arginine is a selective chemical solvent 

already used for CO2 capture from flue 

gases

• Arginine is sold as fitness supplement and 

for livestock and is therefore safe to handle

• Loaded L-Arginine can be regenerated 

electrochemically by electrodialysis

• Mass transport limitations due to low CO2 

concentration in air; 3D printed structures 

to enhance the transport at low pressure 

drop

• Electrodialysis provided by Deukum GmbH
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Basic Principle of Electrodialysis
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Characterization of the L-Arginin-CO2 interaction
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• First item was the quantification of the capacity of Arginine to absorb CO2 and the calibration of the conductivity measurement

• Maximum of loading per molecule of Arginin is around one, with increasing concentration of Arginin, the relative CO2 capacity 

decreases, while the absolute capacity increases

• The solubility of pure Arginin is limited to around 1 mole per liter of water. Higher concentrations must be obtained by partial 

CO2 loading. The CO2 loading then must be kept above the solubility limit



3d-printed Gyroid structures as efficient absorber packings
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• Gyroids are triply periodic 
minimal surface bodies

• Can be additive manufactured 
from different materials

• Offer low pressure drop, while 
increasing the mass transport 
into the liquid

• Structurally very rigid

• Characterized by surface to 
volume ratio



Pressure drop measurements of the different packing materials
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• Pall ring packing as standard 
industrial solution

• Dry pressure drop:

• Gyroids up to a surface ratio of 

250 m2/m3 offer lower pressure 

drop

• Similar pressure drop to the 

Gyroid 350 (similar surface 

ratio)

Bild: Munters

𝐹 = 𝑢𝐺 ⋅ 𝜌
𝐺



Wet pressure drop at varying liquid flows
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Pall rings Gyroid 250

𝐹 = 𝑢𝐺 ⋅ 𝜌
𝐺



Mass transport properties of Gyroids compared to the pall ring 

packing
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𝐹 = 𝑢𝐺 ⋅ 𝜌
𝐺



• DAC will provide a nessasary contribution to a cyclic carbon economy and negative 
emissions

• The integration into existing ventilation systems can have certain benefits, if the plant is 
controlled smart

• L-Arginine proves to be a viable alternative technology in the future

• The liquid adsorbent must be scaled up and directly linked to the Electrodialysis

• The rooftop lab has to provide real world data

30

Summary and outlook



Thanks a lot for your attention! 

This work was performed as part of the project ‘A Comprehensive Approach to
Harnessing the Innovation Potential of Direct Air Capture and Storage for Reaching
𝐶𝑂2-Neutrality’ (DACStorE), which is funded by the Initiative and Networking Fund of
the Helmholtz Association (grant agreement number KA2-HSC-12).
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